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PROJECT SUMMARY 
 
This ARO project (Contract No. DAAD19-03-1-0086) from City College of City 

University of New York (CCNY of CUNY) was submitted in response to ARO’s FY 2002 DoD 
Instrumentation and Research Support for Hispanic Serving Institutions (HSIs), BAA No. 
DAAD19-02-R-0010 to conduct research on hybrid carbon-S2 glass fiber/toughened epoxy 
thick-section, hybrid interwoven composite joints subject to drop-weight and ballistic impacts. 
Dr. Basavaraju B. Raju of U.S. Army TACOM-TARDEC was the research collaborator and Dr. 
Bruce LaMattina of ARO was the program manager.  

 
The main objectives of this project are (1) to conduct tensile, drop-weight impact and 

ballistic impact tests of monolithic S2 glass fiber/toughened epoxy composites and hybrid 
carbon-S2 glass fiber/toughened epoxy composites, (2) to verify the experimental results using 
damage-mechanics based, 3-D dynamic nonlinear finite element method embedded in a 
commercial software package, LS-DYNA, (i.e., a combined experimental-numerical approach 
was used in the research), (3) to provide data of research results to supplement Army’s current 
missions in the FCS, (4) to enhance the proposers’ research capabilities on composites at their 
institute through interaction with Army researchers and facilities so that they may participate in 
Army’s mainstream research in the future, and (5) to involve graduate and undergraduate 
students, especially those from underrepresented minorities, actively in the research so that they 
can gain meaningful research experience and may develop interest in pursuing advanced degrees 
in engineering. 

 
It is believed that results obtained in this study could benefit several Army missions and 

current interests in the development and implementation of Future Combat Systems (FCS), such 
as damage tolerance and ballistic impact study of composite integral armors (CIAs) for 
composite armored vehicles (CAVs) demonstrator, rotary-wing structures technology (RWST) 
for RAH-66 Comanche’s lower forward fuselage demonstrator, etc. 
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1.  Introduction 
 
This ARO project (Contract No. DAAD19-03-1-0086) from City College of City 

University of New York (CCNY of CUNY) was submitted in response to ARO’s FY 2002 DoD 
Instrumentation and Research Support for Hispanic Serving Institutions (HSIs), BAA No. 
DAAD19-02-R-0010 to conduct research on hybrid carbon-S2 glass fiber/toughened epoxy 
thick-section, hybrid interwoven composite joints subject to drop-weight and ballistic impacts. 
The two principal investigators, Professors Benjamin Liaw and Feridun Delale, are faculty 
members of the Department of Mechanical Engineering at CCNY since 1984. The research effort 
was in collaboration with Dr. Basavaraju B. Raju of U.S. Army Tank-Automotive & Armaments 
Command (TACOM) – Tank-Automotive Research, Development Engineering Center 
(TARDEC). Dr. Bruce LaMattina was the program manager of this project at ARO. 

 
Established in 1847 CCNY mainly serves residents of New York City, especially those 

from middle- and low-income families. CCNY is a minority institution and an HSI (DUNS + 4 
No. 64932676) with more than 70% of the student body being minorities (approximately half of 
them African-Americans and the other half Hispanics). Founded in 1920, the Grove School of 
Engineering (GSOE) at CCNY is the only public institution offering Bachelor of Engineering 
degrees in New York City. Currently, the CCNY GSOE has an enrollment of more than 2,000 
undergraduate and more than 500 graduate students.  More than half of the GSOE’s students are 
minorities. 

 
We believe that the research results obtained from this study could benefit several Army 

missions and current interests in the development and implementation of Future Combat Systems 
(FCS), such as damage tolerance and ballistic impact study of composite integral armors (CIAs) 
for composite armored vehicles (CAVs) demonstrator, rotary-wing structures technology 
(RWST) for RAH-66 Comanche’s lower forward fuselage demonstrator, etc. [1,2]. Through the 
concept of FCS, the proposed study is within Army’s current umbrella plan, Army 2010 and 
Beyond, which is designed as a transformation of the Army to an Objective Force before 2025.  
 
2.  Goals and Objectives 

 
The main goals and objectives of this study are: 
 

• To conduct tensile, drop-weight impact and ballistic impact tests of monolithic S2 glass 
fiber/toughened epoxy composites and hybrid carbon-S2 glass fiber/toughened epoxy 
composites. 
 

• To verify the experimental results using damage-mechanics based, 3-D dynamic 
nonlinear finite element method embedded in a commercial software package, LS-
DYNA, (i.e., a combined experimental-numerical approach was used in the research). 
 

• To provide data of research results to supplement Army’s current missions in the FCS. 
 

• To enhance the proposers’ research capabilities on composites at their institute through 
interaction with Army researchers and facilities so that they may participate in Army’s 
mainstream research in the future. 
 

• To involve graduate and undergraduate students, especially those from underrepresented 
minorities, actively in the research so that they can gain meaningful research experience 
and may develop interest in pursuing advanced degrees in engineering. 
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3.  Technical Background 
 
3.1: Usage of composites in Army ground vehicles 
 

The use of high performance (i.e., light weight, high strength and stiffness) composites is 
a potential enabling technology to make future combat vehicles lighter, more easily deployable, 
versatile, and survivable. For in the design of composite integral armors (CIAs) [1], the key 
supporting layer to the ceramic tiles is a thick-section structural composite, which is lighter than 
its traditional metal counterpart. The adoption of this technology is critical to the success of the 
U.S. Army’s Future Combat Systems since the use of composite materials may pave the way for 
researchers and engineers to optimize many facets of a combat vehicle’s battlefield capability, 
namely, structural integrity, durability, ballistic protection, repairability, and signature reduction. 
Such a multi-functional improvement will make this vehicle more suitable for strategic global 
deployment [2]. In short, the quintessence of integrated survivability of ground combat vehicles, 
including chassis and turret, is the avoidance of detection (through signature reduction), hit 
(through light-weight mobility), and penetration (through ballistic protection), and if damaged, 
repairability at an affordable cost (i.e., truly supportable). All these can be achieved by replacing 
the current heavy metal parts with fiber reinforced composites. 

 
In general, a polymer-matrix composite (PMC) reinforced with ceramic (including glass 

and carbon) or organic (e.g., Kevlar aramid) fibers has a tensile strength comparable with that of 
metals. Because of its relative lower density, the composite may usually have a more attractive 
specific tensile strength, i.e., tensile strength per unit weight. However, as a trade-off, the use of 
ceramic or Kevlar fibers in a composite renders the composite more brittle. Consequently, the 
composite has a relative weaker impact resistance (called impact toughness or impact tolerance) 
in comparison to its metallic counterpart [3]. This is particularly true if the matrix material is 
made of the more brittle thermosets, rather than the ductile thermoplastics. 

 
Damage in a composite structure, caused by mechanical, thermal, and/or environmental 

loading, can have profound effects on the properties, performance, and life-expectation of that 
structure. Typical mechanical loading includes static, dynamic (or impact), fatigue (or cyclic), and 
creep. Once a composite is damaged, its residual stiffness, strength, and toughness should be re-
evaluated to determine if the damaged composite can still meet the design specifications. 
Conventionally, damage tolerance in a composite structure is defined as the ability of the structure 
to tolerate a reasonable level of damage or defects that may be induced during manufacturing or 
while in service, without jeopardizing the safety of the structure and its users, i.e., structurally 
functional [3-6]. 

 
3.2: Thick-section composites 
 

Although thin-laminate composites are the thrust of most structural applications of 
composites, the use of thick-section composites in heavy-duty structures, such as submarine 
hulls and armored vehicles, have been proved to be feasible. In particular, thick-section 
composite joints are very important structural elements in Army’s advanced ground combat 
vehicles, such as the composite armored vehicles (CAVs), since they are used not only for the 
vehicle’s body, but also for joining the ceramic/PMC armor to the vehicle for easy opening for 
inspection and repair. On battlefields these composite joints very often are subject to severe 
loading conditions and environments, such as impact and penetration, freezing and desert-like 
temperatures, etc. 
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The transfer of scientific and technological knowledge from that of thin-laminate 

composites to thick-section composites is not a trivial process. Just to name a few, the classical 
lamination theory is no longer valid; instead, three-dimensional effects, including edge 
delamination, cross-sectional warping, moduli variation through thickness and dynamic behavior, 
should be taken into account. Scaling effect should be considered when dealing with thick-
section composites [7-10]. Fiber waviness is often introduced in thick section composites during 
manufacturing process due to improper resin infiltration or non-uniform composite curing and 
consolidation [10]. Thermal damage may be caused by high temperature (thermal spiking) in the 
interior of the thick section due to exothermic cross-linking reactions of thermosetting matrix 
materials and poor heat transfer in the composite. Finally, residual stresses can be easily induced 
due to the heterogeneous nature of the constituent materials and the high processing temperature 
needed for thick-section composites. Since thick-section composites behave very differently from 
their thin-laminate counterparts, research on this load-bearing composite structure has gained a lot 
of attention recently. The afore-mentioned issues, such as fiber waviness, cross-sectional warping, 
edge delamination, moduli variation through thickness, three-dimensional stress wave propagation, 
etc., have been studied by researchers using various experimental techniques (ultrasound [11-14], 
vibration [15], dynamic moiré interferometry [16], neutron radiography [17], transient 
thermography [18]). Damage resulting from shock, drop-weight impact, tensile, compressive, shear 
and three-point bending were investigated experimentally and analytically by other researchers 
[19-32].  

 
3.3: Hybrid composites 
 

So far, most of studies of load-bearing capability of thick-section composites have been 
limited to composite materials made of single fiber system [7-32]. This is especially true for 
composite joints even though joining is very critical in the manufacturing and repair of 
composite structures [33-36]. On the other hand, there have been extensive investigations and 
engineering applications of thin-laminate composites made of hybrid fiber composites, which 
incorporate different types of fibers in a single composite system. The first hybrid composite 
utilizing fiberglass reinforced plastics and a honeycomb core made of balsa wood was produced 
in the U.S. in 1942 [37]. Since then the use of high performance fiber hybrid composites has 
been growing rapidly. One of the advantages of using hybrid composites is the flexibility in the 
choice and distribution of fiber reinforcements. Hancox [38] classified four basic types of hybrid 
composites: Type A is made of intermingling fibers of different types in a common matrix (i.e., 
intermingled or intraply); Type B is formed by laminating layers with fibers of different types 
(i.e., interlaminated or interply); Type C is in a form of fiber skins with a fiber core; and Type D 
is constructed by fiber skins with a non-fiber core. In addition, if the reinforcements are fabric, 
each fabric may contain more than one-type of fiber and is termed interwoven [39]. 

 
Indeed, because of the freedom of choosing reinforcement and matrix constituents and 

the selection of manufacturing process, the possible types of hybrid composites useful for 
scientific and engineering applications can run the gamut. Although most of the reinforcements 
used in hybrid composites are continuous fibers, such as carbon (graphite), glass, Kevlar, boron, 
etc., [40-51], other forms of reinforcements, such as natural fibers (bamboo, oil palm, etc.) 
[52,53], woven or non-woven fabrics, glass mats, and interplies [54-62], short fibers [63-65], 
particulates (glass beads, calcite and talc particles, etc.) [64], wollastonite whiskers [65], the 
relatively inexpensive thermoplastic fibers (PET, polyethylene, polypropylene, etc.) [65-71], 
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thermotropic liquid crystalline polymer (TLCP) fibrils [72,73], etc., have also been used. The 
choice of resin system is also very broad [74] and may include almost all types of polymers. For 
instance, to manufacture a polymer matrix hybrid composite, one can use the strong, stiff and 
relatively brittle thermosets (e.g., epoxy [48,57,71], phenol-formaldehyde [53], etc.) or the 
relatively ductile, yet tougher thermoplastics (e.g., PPS [45,46], vinylester [62], 
poly(methylvinylsiloxane) [65], PMMA [66,67], PBO [70], PEEK, PES, polycarbonate [73], 
PAEK [75], etc.). In addition, one can also adopt practically any process commonly used for 
polymer composite manufacturing, e.g., compression molding, vacuum bag/autoclave, 
pultrusion, filament winding, etc. to manufacture hybrid polymer composites [76-79]. 
Furthermore the concept of hybrid composite has gone beyond the realm of conventional 
polymer composites. Hybrid metal-polymer laminates, called fiber metal laminates (FMLs), have 
been widely used in aerospace industry [80-82]. Song et al. [83] reported investigation of hybrid 
metal matrix composites (MMCs). Some recent efforts were geared toward the studies of 
functionally gradient hybrid composites [84] and smart hybrid composites incorporating shape 
memory alloys (SMAs) [85-88]. One of the goals of manufacturing smart hybrid composites is to 
develop a material system with self-diagnosing function for preventing fatal fracture [89]. 

 
In practice, hybrid composites with two types of fibers are most useful and cost-effective. 

For instance, the inexpensive E-glass fibers may be used to mingle with the relatively costly 
carbon/graphite or aramid fibers. Carbon/graphite fibers are chosen for their low density, high 
specific strength and high specific modulus. On the other hand, aramid fibers provide low 
density, high impact and fatigue strength. However aramid has a relatively lower specific 
compressive strength [41]. 

 
Intuitively we can extend the concept of linear Rule of Mixtures for a single-fiber 

composite:  
 

c f f m mE v E v E= +  
 

where Ec, Ef, Em are the thermomechanical properties of interest of the composite, fiber, and 
matrix, respectively, and vf, vm are the fiber and matrix volume fractions, respectively, to the 
Rule of Hybrid Mixtures (RoHM) of a hybrid composite: 

 

1 1 2 2hc f f f f m mE v E v E v E= + +  
 

where Ehc, Efi, vfi (i = 1,2) are the thermomechanical properties of the hybrid composite, 
constituent fibers, and the volume fractions of the constituent fibers, respectively. However, it 
has been reported widely that many hybrid composites show a synergistic effect, called 
hybridization, which causes the resultant thermomechanical property to deviate from the linear 
RoHM [40,90-94]. We call the deviation positive or negative hybridization, depending on the 
relative value of a thermomechanical property of a hybrid composite with respect to the 
hypothetical linear RoHM. One of the requisites for the occurrence of hybridization effect is that 
the two types of fibers differ in mechanical properties and the interfaces they form with the 
matrix are also not the same [63]. 

 
With hybridization, it is possible to design a composite material system to better suit 

various requirements. For instance, since the mechanical properties of glass and carbon fibers 
and the interfacial properties of a glass-fiber-reinforced polymer and a carbon-fiber-reinforced 
polymer differ greatly, the hybridization effect would very likely exist for their hybrid 
composites. For example, the fracture energy and compression modulus of Type B hybrid 
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glass/carbon/epoxy composites was observed to show a negative hybridization effect [93,95]. 
However, if the Type A hybrid composite is formed, i.e., incorporating both glass and carbon 
fibers into a single matrix, one would lead to better properties than those expected from the 
RoHM [40]. Several researchers found the hybrid effects of the tensile modulus and the strain at 
failure of glass-rich hybrids [90,92,95] to be positive. As interpreted by Zweben [92], on 
micromechanical level the high elongation glass fibers in the hybrid composite behave like crack 
arrestors hindering cracks to propagate through the composite. Thus, the strain level required to 
fail the hybrid composite is enhanced, resulting in a positive synergistic effect due to 
hybridization. Similar positive hybridization effect has also been reported for woven fabric 
hybrid composites [54,55,96,97]. 

 
In spite of the freedom of tailoring hybrid composites and gaining positive hybridization 

to meet design requirements, effects of such enhancements may be offset when one considers 
problems related to thick-section composites. For instance, due to difference in thermal 
expansion coefficients of fibers and resin, thermal mismatch is already a concern in thin hybrid 
composites [43]. This problem, as well as other issues (e.g., fiber waviness) would be even more 
severe when thick-section composites are considered. Since the majority of applications of thick-
section composites are for military use, temperature rise in armor-grade hybrid fiber composites 
during ballistic impact and projectile penetration should be carefully accounted for [98,99]. 
Unfortunately, the literature available for thick-section hybrid composites is very meager 
[44,45]. It is practically non-existent for thick-section interwoven hybrid composites. 

 
3.4: Composite joints 
 

With only a few exceptions the joints in a composite structure usually determine the 
overall strength of that structure because more often than not one of the joints will become the 
weakest part of the structure. Open literature on joining of single-fiber composites by either 
mechanical fastening (bolted, pinned, or riveted), adhesive-bonding, or the combined bonding-
mechanical-fastening is abundant (see Ref. [33-36,100]). In a nutshell [36,101], the advantages 
of a mechanical joint are: 

 

• tolerance to the effects of environment and fatigue loading 
• ease of inspection 
• capability of repeated assembly 
• higher reliability 
• no special surface preparation required 
 

However, it requires a hole to be drilled, which causes unavoidable stress concentrations as well 
as a weight penalty due to the addition of the bolt to the composite. On the other hand, the 
advantages of a bonded joint are: 

 

• high strength/weight ratio of the joint region 
• low part count 
• no strength degradation due to cutouts 
• potential corrosion problems minimized 
• larger area for load distribution (with little or no stress concentration) 
 

However, it requires careful surface treatment of the adherend, may be affected by severe 
environment, and is difficult to dismantle for inspection. 
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It is well known that for a thick-section composite load transfer through bolted joins is 
more practical since the bearing action of the bolt and the shearing action of the clamps would be 
sufficient if the joint is designed correctly. On the other hand, adhesively-bonded joints are 
mainly for thin-laminate composites. As cited by Dvorak et al. [102], in order to transfer load 
properly, the recommended overlap length for a double lap joint is 46t to 60t, where t is the 
laminate thickness. This will result in an impractical joint length for thick-section composites, 
which has a thickness t at least 0.5”). A more serious problem results from the often low 
interlaminar shear strength of the top plies, which may cause initial joint failure not by adhesive 
failure but by delamination of the surface plies. Once the outer plies are delaminated, stress 
concentrations will occur at these isolated plies, causing lamina-pullout since a significant 
portion of service load is now taken by these isolated, delaminated outer plies. Hence, the 
original design idea of increasing composite thickness to support higher load would not work. 
The problem may be alleviated but not eliminated entirely by distributing the adhered surface 
through the thickness of the adherends in stepped-lap joints [103-105] or tongue-and-groove 
joints [102,106]. In either design the end sections of adherends need to be machined into steps or 
grooves first, which not only will cost more in the manufacturing/repair process, but also will 
induce stress concentrations; thus offsetting the merit of re-distributing loading through the 
thickness. 

 
Another point of concern is the severe working conditions under which a military ground 

vehicle is expected to perform. An adhesively-fastened joint may reach its glass transition 
temperature due to temperature rise from repeated loading or working under higher temperature 
conditions. Above its glass transition temperature an adhesive may show viscoelastic or 
viscoplastic behavior. Large deformation due to creep in the adhesive joint may ensue, thus 
defeating the purpose of fastening. To prevent this, one of the proposers suggested a remedy by 
adding a bolt as the back up to hold the adherends in place in case of adhesive failure [104,105]. 
Since it is a secondary fastening mechanism, the required bolt size will be smaller and may result 
in lighter stress concentrations.  

 
So far, there is very little data available on using a combination of reinforcement, such as 

glass, graphite, and Kevlar, to make hybrid composite joints [101,107]. Open literature on thick-
section hybrid composite joints, to the best of proposers’ knowledge, is still non existent. With 
the flexibility of selecting reinforcing fibers and the possibility of positive hybrid effects, one 
may be able to design a hybrid thick-section composite joint optimized for impact strength and 
damage resistance so that better designed Army combat vehicles, such as the FCS, may become 
a reality.  

 
3.5: Impact damage in composites 
 

Impact of solid projectiles on a composite structure may result in substantial damage and 
significantly reduce the usefulness of the structure. Conventionally, we characterize impact damage 
into two classes: low-velocity (i.e., non-penetrating) impact damage and ballistic (i.e., penetrating) 
impact damage [3]. As its name implies, the non-penetrating, low-velocity impact mainly causes 
internal, invisible damage. In practice, low-energy, non-penetrating impact may occur when a 
larger object (such as a tool) is accidentally dropped onto a composite structure. On the other hand, 
ballistic impact occurs when a solid object impinges at a composite structure at a high velocity, 
causing deep penetration, perforation, and/or spalling fragmentation.  
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(a) tensile crack 
 

(a) shear crack 
 

Figure 3.5-1.  Two basic types of matrix cracks [3]. 
 
As soon as the impactor contacts the target, a complex wave pattern, including possibly a 

compressive P-wave, shear SH- and SV-waves, and surface Rayleigh and Love waves, 
immediately ensues [108]. The material behind a compressive wave is, in general, in a tensile state. 
When reflected from a boundary (such as the back face of the target plate), the compressive wave 
may change into an expanding (i.e., tensile) wave. After being amplified by the oscillatory motion 
of the target plate, these waves may generate tensile and/or shear cracks (see Fig. 3.5-1) in matrix 
[109,110]. In general, due to bending motion of the target plate, which creates compression near 
impact site while tension at the opposite side of the plate, shear cracks frequently occur right 
underneath the impact site whereas tensile cracks develop at the opposite side of impact.  

 
Once these matrix cracks are formed, 

regardless which type, they often deflect at the 
interface of laminae of different orientations to 
form delamination [110,111]. Experimental studies 
consistently reported that no delamination was 
observed between two adjacent plies having the 
same fiber orientation. It is also interesting to note 
that when impacted from top, the delaminated area 
(which occurs at interfaces between plies of 
different fiber directions) has an oblong or 
“peanut” shape, as illustrated schematically in 
Fig. 3.5-2, with its major axis being oriented along the fiber direction of the lower ply at that 
interface. 

 

 

(a) pine-tree pattern 
 

(b) reversed pine-tree pattern 
 

Figure 3.5-3.  Typical sectional views of damage pattern in a composite [3]. 
 

Depending on the flexural rigidity of the target plate, two basic modes of damage patterns 
have been reported [112]. For a stiff thick composite block subjected to impact, a pine-tree damage 
pattern, as shown in Fig. 3.5-3(a), may develop; whereas low-velocity impact on a flexible thin 
composite panel may result in a reversed pine-tree damage pattern, as depicted in Fig. 3.5-3(b). 
Bending stiffness mismatch has been attributed to as the main factor causing these two damage 
patterns [113]. Experimental evidence (e.g., [114]) shows that once more severe damage types, 

 

 
 

Figure 3.5-2.  Orientation of delamination 
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such as, debonding along fiber-matrix interface, fiber pullout, and fiber breakage, etc., occur, the 
target plate will suffer extensive damage, rendering the composite irreparable. 

 
Various apparatus have been developed to simulate low velocity impact tests.  The most 

common type is the drop-weight tester [115,116], which generates impact velocity by dropping the 
impactor from a given height.  The impact velocity produced by this method is usually low (in an 
order of 10 m/s). For instance, using Newton’s second law, one can quickly estimate that a 
gravity-driven drop from a height of 5 m will achieve a maximum impact velocity of merely 
9.9 m/s. High velocity impacts (in an order of 1,000 m/s) are, in general, achieved by shooting the 
projectile from a gas gun [117]. In addition to impact velocity, other important parameters 
deserving consideration include: the impactor’s mass (which, in conjunction with the impact 
velocity, constitutes the impact energy), shape, elastic properties, the incidence angle, the target’s 
material properties [114], lay-up configuration [114,118], stitching [119,120], tension preload (i.e., 
initial stress) [121], environmental conditions [122,123], etc. For instance, as summarized in a 
comprehensive review by Abrate [3], impact damage resistance can be increased by: 

 

• Using toughened epoxy or thermoplastic as the matrix material,  
• Introducing “interleaving”, i.e., discrete layers of very tough, very ductile resin inserted at 

certain interfaces, 
• Making the fiber-matrix interface more “rubbery” rather than “glassy” (this is particularly 

useful for composites reinforced by glass fibers), 
• Adopting woven or stitched (instead of unidirectional) laminates (to improve through-the-

thickness stiffness, thus reducing bending stiffness mis-matching), 
• Applying initial tension (to make the target plate more difficult to bend). 
 

 
Due to its inherent complexity, attempt to reconstruct the entire sequence of impact-damage 

events in a composite, if not impossible, can be very difficult. To obtain solutions, very often one 
needs to make drastic compromises, i.e., by adopting great approximations. For instance, results 
from quasi-static indentation analyses [124,125] have been widely used to estimate time histories 
of impact force and contact area. The results were used, in turn, to determine the onset and extent 
of damage [126]. By incorporating appropriate strength-theory-based failure criteria and fracture-
mechanics-based crack propagation criteria [127-131] into three-dimensional stress analyses (often 
through finite element codes), the final extent of damage site, especially the delamination area, may 
be evaluated. This approach in general involves extensive computations and has been limited to 
simple lay-up configurations, e.g., symmetric cross-ply laminates. Numerical simulations of high-
velocity impact phenomena in three-dimensional thick-section composites is still non-existence [6]. 
Most of previous work on numerical modeling on high-velocity impact was mainly limited to two- 
dimension simulations [132]. The available three-dimensional numerical simulation codes [133] 
are for either homogeneous materials (e.g., monolithic ceramics) or bi-materilas (e.g., 
ceramic/metal armors) [134-137]. 

 
Post-impact studies of composites usually involve: 

 

• Non-destructive evaluation of damage extent, especially the delamination area, using X-ray 
radiographic [110] and/or ultrasonic [111] techniques, 

• Estimating residual properties, especially the compressive-after-impact (CAI) strength 
[138] and compressive-after-ballistic impact (CABI) strength [6], residual tensile [139] and 
flexural [140] strength, stiffness, and ductility, residual buckling stability [141], etc. 
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Compared to impact on traditional single-fiber unidirectional composites, studies on the 
effects of impact loading on woven composites [142-146], stitched composites [147-149], 
composite joints [150-153], and hybrid composites [46-48,57,62,79,154] are still very few. It 
should also be pointed out that when a material is subject to high-velocity impact, its property may 
change due to the effect of high strain rate and temperature resulting from during penetration and 
severe deformation [155-157]. 
 
4.  Research Results 

 
4.1: Materials 
 

The main goal of the proposed research is to investigate damage caused by low-velocity 
and ballistic-speed impact in thick-section hybrid composite joints and the ensuing issue of damage 
tolerance. After reviewing available literature [6,119-120,142-149,158-165] and considering 
Army’s need for ground combat vehicle applications and the capabilities of the laboratories at 
CCNY and U.S. Army TACOM, we would like to propose for this project the choice of 1/4” 
composites (approximately 24 layers) made of toughened epoxy (cured at 350°F, instead of 
250°F) reinforced by carbon/S2 glass interwoven stitched fabrics. S2 glass fiber-reinforced 
toughened epoxy has been proven to be a viable material for the Composite Armored Vehicle 
demonstrator program. Previously the proposers had investigated the thermomechanical behaviors 
of this material through a contract from U.S. Army TACOM. (Contract No. DAAE07-96-C-X-
121, 04/09/1996-06/30/1999).  

 
The selection of interwoven fabric composites with through thickness stitching should 

increase the out-of-plane bending rigidity and reduce, if not fully eliminate, delamination during 
impact. We also would like to suggest using vacuum-assisted resin-transfer molding (VARTM) to 
manufacture the hybrid composites since using the VARTM technique will allow us to design the 
preform easily, which is a feature very desirable for hybrid composite manufacturing [166]. 
However we are fully aware of the existence of a new process, called co-injection resin-transfer 
molding (CIRTM), which was developed by Army Research Laboratory, University of Delaware, 
and the CAV/Crusader composite structure contractor, United Defense Limited Partnership 
(UDLP) [2,6,167]. If the technique is available to us, we would like to use it to make specimens. 
For either manufacturing process, great care should be taken during preform preparation to reduce, 
if not fully avoid, fabric warping due to fiber crimping and fiber breakage due to stitching. Another 
important factor, stacking (lay-up) sequence, should be carefully evaluated [69,118]. 

 
After careful evaluation, the vendor, EDO Fiber Innovations, was selected to manufacture 

both strip- and panel-types of composite specimens for the project. Per recommendation from 
TACOM-TARDEC engineers, the composites are made of API SC-79 epoxy resin reinforced by 
fabrics, which are made of either IM-7 graphite (i.e., carbon) fibers, or S-2 glass fibers, or the 
hybrid of these two. All fabrics are crimped 0/90 degree, plain-weave woven, with a weight of 
10-12 oz/sq yd and a 6K tow size. The fiber volume fraction is around 55%. A resin tackifier 
was used prior to the VARTM molding operation with a curing temperature around 350°F. 
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4.2: Static tests 
 

Quasi-static tensile tests of 1/4” thick composite strip specimens were tested at CCNY in 
a 22-kip MTS 810 universal testing machines equipped with an environmental chamber (Fig. 
4.2-1). The complete load and displacement curves were recorded using National Instruments 
LabVIEW and DAQ data acquisition system. Strain gage technique were used to verify the 
recorded displacement data and to evaluate the Poisson’s ratios. 

 

 
 

Figure 4.2-1.    The MTS machine with an environmental chamber. 
 
Woven composite strip specimens with four different lay-ups were tested under uniaxial 

tension. The four lay-up configurations are: all S2-glass fiber reinforced (called GL), all IM-7 
graphite fiber reinforced (called GR), symmetric hybrid S2-glass outside and IM-7 graphite 
inside reinforced (called GL-GR-GR-GL), and symmetric hybrid IM-7 graphite outside and 
S2-glass inside reinforced (called GR-GL-GL-GR). Due to the woven fiber structure, the 
transverse modulus (i.e., along the warp direction, called the 2-axis) of the composites was 
assumed to be the same as the longitudinal modulus (i.e., along the fill direction, called the 
1-axis). Thus, tensile tests for transverse direction were not carried out. For each lay-up 
configuration, eight tests were conducted: four along the fill direction (i.e., a 0/90 plain-weave 
woven composite) for measuring the E1 and E2 Young’s moduli and four inclined by 45° (called 
x-axis) with respect to the fill direction (i.e., a ±45 plain-weave woven composite) for measuring 
the Ex (therefore the shear modulus G12). Figure 4.2-2(a) shows the longitudinal stress-strain 
relation along the fill direction of GL specimens with error bars indicating the spread of data 
deviation. Even though each test did not exhibit identical result, similar trend for all these tests 
was observed. Each curve has a linear portion corresponding to the undamaged state, followed 
by a second linear portion with a smaller angle of slope. Figure 4.2-2(b) shows the typical optical 
pictures taken at different strain levels during the test. As shown in Fig. 4.2-2(a), the curve is 
almost linear and failure at around 426 MPa. As shown in Fig. 4.2-3, the measured Poisson’s 
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ratios for these S2-glass fiber-reinforced composites are: ν12 = 0.1621 and ν13 = 0.4134, 
respectively. 

 
Figure 4.2-4(a) shows the in-plane shear stress-strain relation of GL specimens with error 

bars indicating the spread of data deviation; whereas, Figure 4.2-4(b) shows the typical optical 
pictures taken at different strain levels during the test. As shown in Fig. 4.2-3(a), the curve is 
linear initially, followed by an appreciable nonlinear portion, and failure at around 180 MPa. 
Finally, Figures 4.2-5 and 4.2-6 show the longitudinal stress-strain relation along the fill 
direction and the shear stress-strain relation of GR specimens with error bars indicating the 
spread of data deviation. The curve shows a linear portion failed at around 600 MPa for the 
longitudinal case and at around 185 MPa for the shear case. As shown in Fig. 4.2-7, the 
measured Poisson’s ratios for these IM7-graphite fiber-reinforced composites are: ν12 = 0.0202 
and ν13 = 0.4634, respectively. 
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Figure 4.2-2(a)   Tensile-induced damaged longitudinal stress-strain curves for 0/90 plain-weave 
woven composite GL specimens. 
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Figure 4.2-2(b)   Optical pictures of a 0/90 plain-weave woven composite GL specimen taken 
during tensile testing at different strain levels. 
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Figure 4.2-3   The measured Poisson’s ratios of the 0/90 plain-weave woven composite GL 
specimens. 
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Figure 4.2-4(a)   Tensile-induced damaged shear stress-strain curves for ±45 plain-weave woven 
composite GL specimens. 
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Figure 4.2-4(b)   Optical pictures of a ±45 plain-weave woven composite GL specimen taken 
during tensile testing at different strain levels. 

 
The hybrid GR-GL-GL-GR composite’s longitudinal stress strain curves had three 

stages: a linear behavior at the beginning, followed by a second linear portion with a smaller 
angle of slope. During the third stage, the graphite part in the hybrid specimen was fractured first 
and the stress was dropped to 100 MPa. However, the glass part in the hybrid composite was still 
undamaged. Thus, the stress increased linearly up to 180 MPa until the glass part in the hybrid 
specimen fractured. Figure 4.2-8(a) shows the stress strain relations of the GR-GL-GL-GR 
specimen. Optical pictures of the same test are shown in Figure 4.2-8(b). Optical pictures clearly 
show that graphite part fractured first (ε=0.032) and the glass part fractured later (ε=0.041). 
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Figure 4.2-5   Tensile-induced damaged longitudinal stress-strain curves for 0/90 plain-weave 
woven composite GR specimens. 
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Figure 4.2-6   Tensile-induced damaged shear stress-strain curves for ±45 plain-weave woven 
composite GR specimens. 
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Figure 4.2-7   The measured Poisson’s ratios of the 0/90 plain-weave woven composite GR 
specimens. 
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On the other hand, the two-stage stress-strain failure was not observed for shear tests of 
hybrid specimens. Shear tests exhibit a linear portion at the beginning followed by a second 
linear portion with smaller slope. Graphite and glass failed together. The shear stress-strain 
relations of GR-GL-GL-GR specimen and optical pictures taken during the test are shown in 
Fig.4.2-9. Finally, the behaviors of hybrid GL-GR-GR-GL specimens were similar to the hybrid 
GR-GL-GL-GR specimens. The longitudinal and shear stress strain relation are shown in Figs 
4.2-10 and 4.2-11, respectively. 
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Figure 4.2-8(a)   Tensile-induced damaged longitudinal stress-strain curves for 0/90 plain-weave 
woven composite symmetric GR-GL-GL-GR specimens. 
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Figure 4.2-8(b)   Optical pictures of a 0/90 plain-weave woven composite symmetric 
GR-GL-GL-GR specimen taken during tensile testing at different strain levels. 
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Figure 4.2-9(a)   Tensile-induced damaged shear stress-strain curves for ±45 plain-weave woven 
composite symmetric GR-GL-GL-GR specimens. 
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Figure 4.2-9(b)   Optical pictures of a ±45 plain-weave woven composite symmetric 
GR-GL-GL-GR specimen taken during tensile testing at different strain levels. 
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Figure 4.2-10   Tensile-induced damaged longitudinal stress-strain curves for 0/90 plain-weave 
woven composite symmetric GL-GR-GR-GL specimens. 
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Figure 4.2-11   Tensile-induced damaged shear stress-strain curves for ±45 plain-weave woven 
composite symmetric GL-GR-GR-GL specimens. 
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4.3: Drop-weight impact tests of S2-glass fiber reinforced toughened epoxy composites 
 

Because of their high specific strength and stiffness, composite materials have been 
adopted for various beam-type load-bearing structures for several decades [168]. Recently these 
high strength, high stiffness and low density composites had found beam-type structural 
applications under high loading rates, such as drive-shafts of automotives, rotor blades of 
helicopters, intake fan blades of jet engines, or even an entire composite wing of a space craft 
[169-171]. The damage tolerance of a composite used for this class of applications depends 
greatly on the impact-resistance capability of the material. When designing a composite beam, 
we often treat it as a 1-D linearly-elastic member and pay attention only to the axial stress/strain 
induced by the flexural deformation. However, once a composite beam is damaged, no matter 
what the source of defect is (e.g., delamination, matrix cracking, fiber breakage, fiber-matrix 
debonding, etc.), the 1-D nature, in general, is no longer preserved and the damaged structural 
member should be treated in the more complicated 3-D manner, including  nonlinear elasticity 
and anisotropy induced by damage [171,172]. Furthermore, in order to achieve significant 
reduction in cost and weight, advanced technologies such as stitching, braiding and knitting had 
recently been employed to form 3-D composites [173-175]. Hence the study of structural 
behaviors of composite beams requires rigorous analyses based on the more realistic 3-D 
nonlinear anisotropic constitutive laws. In this study, a combined experimental and 3-D dynamic 
nonlinear finite element approach was adopted to study composite beams subject to drop-weight 
or ballistic impact. 

 
Experimental procedures 
Composite panels made of toughened epoxy (i.e., cured at 350°F) reinforced by 

uni-directional S2 glass fibers (44% fiber volume fraction) were first machined into simple 
strip or dog-bone beam specimens. The panels had 24 layers (approximately 6.35 mm) of 
laminae, which were stacked with different lay-up configurations: 

1) uni-directional: 
24

0    

2) cross-ply: 3 3 2S
0 / 90   , 2 2 3S

0 / 90    or 2 2 3S
90 / 0    

3) quasi-isotropic: 3 3 3 3 S
0 / 45 / 90 / 45 −  or 3 3 3 3 S

90 / 45 / 0 / 45 −   
 
The first part of the experimental program involved low-velocity impact tests, which 

were conducted using an Instron-Dynatup 8250 pneumatic-assisted, instrumented drop-weight 
impact testerequipped with a pneumatic break to avoid multiple strikes (Fig. 4.3-1). As shown in 
Fig. 4.3-2, a 6.35mm thick dog bone specimen of 254 mm in length, 25.4 mm in width at both 
ends and tapered down to 12.7 mm in the mid-section was clamped circumferentially in the 
specimen fixture of the drop-weight impact tester along a circle of a diameter of 76.2 mm 
measured from the center of the specimen. In addition, two strain gages were mounted on the 
front and back faces of the specimen, respectively, at a distance of 12.7 mm away from center.  
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Figure 4.3-1.   The drop-weight impact machine. 
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Figure 4.3-2.   Strain-gage mounted dog-bone composite beam specimen 
for drop-weight impact test. 

 
The specimens, as shown in Fig. 4.3-3, were then impacted by a Charpy-type straight-line 

impactor with different impact velocities, Vo. Table 4.3-1 lists the specimen stacking sequences 
and the impact velocities of a 5.1 kg hemi-spherical drop-weight tup for five drop-weight tests. 
For each drop-weight test, the impact velocity and the time-histories of impact force and strains 
were recorded. It should be pointed out that because of the high levels of strains generated 
during the drop-weight impact event, only one out of the five tests the strain gage mounted on 
the tension side survived (i.e., SG-2 on the bottom face in Fig. 4.3-2). On the other hand, we 
always recorded successfully the strain histories in SG-1, which was mounted on the top face in 
Fig. 4.3-2. 

 

 
 

Figure 4.3-3.   Schematic diagram of the set-up for drop-weight impact tests. 
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Table 4.3-1.   Parameters of drop-weight impact tests. (drop weight: 5.1 kg hemi-spherical head) 

 

Test Lay-up sequence Impact velocity, V0  (m/s) 

1 2 2 3S
0 / 90    3.98 

2 2 2 3S
90 / 0    3.98 

3 2 2 3S
90 / 0    10.21 

4 3 3 3 3 S
90 / 45 / 0 / 45 −   10.72 

5 24
0    10.83 

 
Experimental results and discussion 
Various factors (such as lay-up configuration, laminate thickness, constituent properties, 

temperature, impact velocity and energy, etc) can affect the impact response and damage 
patterns. For instance, for the 1st and 2nd drop-weight tests (cross-ply beams of different stacking 
sequences), the tup was first placed at the highest point of the impact tester, then dropped by 
free-fall. The velocity obtained was around 3.98 m/s. Figure 4-3.4 depicts the time histories of 
impact force and dynamic strain for Drop Test 1. As shown in the figure, peak impact force: 5.5 
KN and maximum dynamic strain: 2,100 µε occurred around 1.0 and 1.4 ms, respectively. 

 
The post-impact specimens were inspected by a Physical Acoustics Corporation 

UltraPAC immersion ultrasonic imaging system (Fig. 4-3.5) to reveal internal damage, if any, 
using C-scan. By observing the ultrasonic C-scans and optical microfractographs, as shown in 
Figs 4-3.6 and 4-3.7, respectively, the 3.98 m/s drop-weight impact velocity did not create any 
delamination in the 2 2 3S

0 / 90    specimen. 
 
Figure 4.3-8 shows the recorded time histories of impact force and dynamic strains for 

Drop Test 2. The peak impact force and maximum dynamic strain were 5.0 KN and 1,000 µε, 
and occurred around 1.5 and 1.7 ms, respectively. Figure  4.3-9 displays the corresponding post-
impact optical microfractographs, which clearly shows slight delamination. As indicated by 
these figures, for two otherwise identical cross-ply beams, e.g., 2 2 3S

0 / 90    vs 2 2 3S
90 / 0   , 

different stacking sequences provide small difference in impact resistance.  
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(b) dynamic strain (top gage: SG-1) 
 

Figure 4.3-4.   Impact force and strain histories of Drop Test 1: 2 2 3S
0 / 90    cross- ply S2 glass- 

toughened epoxy composite beam impacted at 3.98 m/s by a 5.1 kg hemi-spherical drop-weight. 
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Figure 4-3.5.   An immersion ultrasound system. 

 
 

(a) before impact 
 

 
 

(b) after impact 
 

Figure 4.3-6.   Ultrasonic C-scans of the cross-ply specimen before and after impact 
in Drop Test 1. 
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(a) side  view 
 

(b) close-up 
 

Figure 4.3-7.   Post-mortem optical microfractographs of the cross-ply specimen used 
in Drop Test 1. 

 
The results implies that the 2 2 3S

0 / 90    stacking sequence is stronger than the 2 2 3S
90 / 0    

sequence. This can be explained easily by the fact that a lamina is much stronger along the 0° 
(longitudinal) direction than along the 90° (transverse) direction. During the dynamic flexural 
motion caused by drop-weight impact, since the maximum tensile and compressive axial strains 
occur at the top and bottom faces, hence placing the 0° orientation of the outer laminae along the 
spanwise direction of the composite beam should provide better impact resistance. 

 
In order to reach higher drop-weight impact velocities, the pneumatic assistance option of 

the impact tester was activated for the remaining three Drop Tests; thus, as listed in Table 4.3-1, 
the impact velocities for Drop Tests 3 to 5 are 10.21, 10.72 and 10.83 m/s, respectively. These 
drop-weight tests with higher impact velocities caused more delamination and further damage. 
Figures 4.3-10 to 4.3-15 show their corresponding time-histories of impact forces and dynamic 
strains as well as optical microfractographs. 

 
As depicted in Figs 4.3-12 and  4.3-13, the quasi-isotropic 3 3 3 3 S

90 / 45 / 0 / 45 −   specimen 

was the weakest and could only resist an impact force of 3.6 KN. During the drop-weight impact 
test, the specimen was broken completely at the impact site. By observing Figs 4.3-14 and 
4.3-15, the uni-directional 

24
0    specimen could sustain a higher load of 3.9 KN; but also failed 

completely at the impact site. On the other hand, when impacted at 10.21 m/s, the 2 2 3S
90 / 0    

cross-ply specimen, even though suffered delamination in several layers; did not sever fully, as 
shown in Fig. 4.3-11. The cross-ply specimen sustained an impact force up to 5.8 KN, as 
indicated in Fig. 4.3-10. Thus, one may conclude that the cross-ply configurations: either 

2 2 3S
0 / 90    or 2 2 3S

90 / 0    were stronger than other configurations when all other impact 

parameters being the same. 
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(b) dynamic strains 
 

Figure 4.3-8.   Impact force and strain histories of Drop Test 2: 2 2 3S
90 / 0    cross- ply S2 glass-

toughened epoxy composite beam impacted at 3.98 m/s by a 5.1 kg hemi-spherical drop-weight. 
 

 

(a) side  view 
 

(b) close-up 
 

Figure 4.3-9.   Post-mortem optical microfractographs of the cross-ply specimen used 
in Drop Test 2. 
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(b) dynamic strain (top gage: SG-1) 
 

Figure 4.3-10. Impact force and strain histories of Drop Test 3: 2 2 3S
90 / 0    cross- ply S2 glass-

toughened epoxy composite beam impacted at 10.21 m/s by a 5.1 kg hemi-spherical drop-
weight. 

 
 

 

(a) side  view 
 

(b) close-up 
 

Figure 4.3-11.   Post-mortem optical microfractographs of the cross-ply specimen used 
in Drop Test 3. 
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(b) dynamic strain (top gage: SG-1) 
 

Figure 4.3-12. Impact force and strain histories of Drop Test 4: quasi-isotropic 
3 3 3 3 S

90 / 45 / 0 / 45 −   S2 glass-toughened epoxy composite beam impacted at 10.72 m/s by a 5.1 

kg hemi-spherical drop-weight. 
 

 

(a) side  view 
 

(b) close-up 
 

Figure 4.3-13.   Post-mortem optical microfractographs of the quasi-isotropic specimen used in 
Drop Test 4. 
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(b) dynamic strain (top gage: SG-1) 
 

Figure 4.3-14. Impact force and strain histories of Drop Test 5: 
24

0    uni-directional 

S2 glass-toughened epoxy composite beam impacted at 10.83 m/s by a 5.1 kg hemi-spherical 
drop-weight. 

 

 

(a) side  view 
 

(b) close-up 
 

Figure 4.3-15.   Post-mortem optical microfractographs of the uni-directional specimen 
used in Drop Test 5. 
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Dynamic finite element simulations 
The afore-mentioned experimental results were used to validate a damage-induced 

nonlinear anisotropic constitutive law developed previously by this research group [176,177]. 
Figure 4.3-16 shows the stress-strain curves characterizing the damage-induced nonlinear 
anisotropic behaviors of the S2 glass/toughened epoxy. The slopes of these curves represent E1: 
lamina Young’s modulus along the fiber (longitudinal) direction, E2 = E3: lamina Young’s 
moduli along the transverse directions, and G12 = G13: lamina in-plane shear moduli, 
respectively. The initial slopes of these curves are: 40, 13 and 10 GPa, respectively. In addition, 
the density ρ of the composite is: 2 g/cm3. These curves were then entered as User-Defined 
Material into LS-DYNA, which is a commercially available general-purpose finite element code 
for analysis of 3-D large deformation dynamic response of structures based on explicit-time 
integration scheme [178]. 

 

   
 

(a) E1 
 

(b) E2 = E3 
 

(b) G12 = G13 
 

Figure 4.3-16. Nonlinear longitudinal, transverse and in-plane shear stress-strain curves with 
their slopes representing Young’s and shear moduli. 

 
Figure 4.3-17 shows the LS-DYNA finite element mesh simulating drop-weight impact 

onto a 2 2 3S
90 / 0    cross-ply composite beam. Low velocity drop-weight impact problems were 

modeled using orthotropic elastic material model (MAT 002) of LS-DYNA, which is valid for 
describing the elastic-orthotropic behaviors of solids, shells and thick shells without 
consideration for failure [178]. The Charpy-type straight-line impactor was modeled as a rigid 
body in the FEM simulations for drop-weight impact tests. 
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Figure 4.3-17.   Finite element simulation of drop-weight impact for the 2 2 3S
90 / 0    

configuration. 
 
In this study FEM predictions with experimental results were compared mainly for 

impact force and dynamic strain histories and post-impact damage patterns. The FEM mesh in 
Fig. 4.3-17 was used to simulate Drop Test 2: cross-ply 2 2 3S

90 / 0    composite beam impacted at 

3.98 m/s by a 5.1 kg hemi-spherical drop-weight tup. Due to symmetry, only a quarter model 
was used with 256 elements for each layer for the 24-layer specimen. As shown in Fig. 4.3-18, 
the time histories of impact forces and dynamic strains between the experimental records and 
FEM results are in good agreement. The experimental curves of impact force and strain were 
smoother than the FEM results and exhibited time delays. This can be explained with the fact 
that experimental impact force and strain measurements were obtained through a load cell and 
strain gage amplifiers, where actual readings might have been filtered. 
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(a) impact force 
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(b) dynamic strain 
 

Figure 4.3-18. Comparison of impact force and dynamic strain histories for 2 2 3S
90 / 0    cross-ply 

S2 glass-toughened epoxy composite beam impacted at 3.98 m/s by a 5.1 kg hemi-spherical 
drop-weight. 
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4.4: Drop-weight impact tests of woven hybrid composites 
 
Experimental procedures 
Low impact tests at three different energy levels were carried out using the Dynatup 

impact machine. During all impact tests, a 5.1 kg weight was attached to a steel impactor with a 
hemispherical tip diameter of 16 mm. The first energy level 40J was obtained by placing the 
mass at the highest position and dropping it freely. To obtain 50J and 100J, the mass was placed 
at the highest position and the pneumatic assistance option was deployed to increase the impact 
energy. Specimens were clamped circumferentially along a diameter of 76.2 mm in the 
pneumatic clamped fixture. Figure 4.4-1 shows the schematic drawing of low impact test. “h” is 
the height to obtain maximum potential energy. “d” is the maximum deflection that occurs 
during the test. Details of the drop-impact tests conducted during this study are given in 
Table 4.4-1. 

 

 
 

Figure 4.4-1  Schematic drawing of the experimental set-up for low impact tests of woven hybrid 
composites. 

 
Table 4.4-1  Information of low impact tests of woven hybrid composites. 

 

SPECIMEN TYPE VELOCITY(m/s) MASS(kg) IMPACT ENERGY(J) ABSORBED ENERGY(J) REBOUND ENERGY(J)

1 GL 3.82 5.1 40 15.84 24.16
2 GR/GL/GL/GR 3.91 5.1 40 16.71 23.29
3 GR 3.88 5.1 40 26.25 13.75
4 GL/GR/GR/GL 3.91 5.1 40 16.04 23.96
5 GL/GR/GR/GL 4.39 5.1 50 23.18 26.82
6 GR/GL/GL/GR 4.38 5.1 50 18.4 31.6
7 GR 4.4 5.1 50 35.86 14.14
8 GL 4.41 5.1 50 12.32 37.68
9 GR/GL/GL/GR 6.27 5.1 100 78 22
10 GL/GR/GR/GL 6.29 5.1 100 78.64 21.36
11 GR 6.26 5.1 100 100 0
12 GL 6.29 5.1 100 72 28  

 
Impacted specimens were scanned using an ultrasonic system. The through transmission 

technique using 5 MHz focused transducer was successfully applied to see the internal 
delamination of the impacted specimens. Additionally, optical pictures of the front and back 
surface of the damaged composites were taken.  
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Experimental results and discussion 
Figures 4.4-2 to 4.4-5 show the optical and C-scan images of impacted specimens. An 

important issue is how these images should be interpreted. Once optical images were evaluated, 
it was clear that the length of the horizontal and vertical cracks at the front surface of the GL and 
GR/GL/GL/GL specimens was longer compared to the other two types. Table 5.2 shows the 
length of the cracks of impacted specimens. 

 
Table 4.4-2  Front surface crack length of composites impacted at 40J, 50J and 100J. 

 

SPECIMEN TYPE
IMPACT ENERGY VERTICAL HORIZONTAL VERTICAL HORIZONTAL VERTICAL HORIZONTAL VERTICAL HORIZONTAL

40J 40 33 28 23 54 61 39 35
50J 35 46 41 29 50 50 28 37

100J 81 48 21 34 76 64 39 42

CRACK LENGTH (mm)
GL GL/GR/GR/GL GR/GL/GL/GR GR

 
 
The back surface damage for the GL specimen was not seen at 40J and 50J energy levels. 

The GR composites had back surface damage for all energy levels and perforation occurred at 
100J test. When a glass outer layer was used, GL/GR/GR/GL composites had back surface 
damage more than glass composite but less than all others. The GR/GL/GL/GR composites, 
which had graphite as the outer skin, had less back surface damage than GR composites and 
more than all others. It can be said that glass fabrics can be used as an outer skin to decrease the 
surface damage of the graphite composites by paying the price of increased weight. Most of the 
composites delaminate after low impact. The delamination sometimes occurs inside the 
composite and can not be seen by naked eye. The degree of delamination should be examined 
carefully. The ultrasonic C-Scan is the most common technique to measure delamination in 
impacted composites. C-Scan images showed increase in delamination as a result of increased 
energy for all type of composites except for the 100J impact test of GR specimen. The 50J 
impact test created more delamination in GR specimen compared to 40J impact tests. However, 
100J impact created less delamination than other energy levels. During 100 J impact test, 
perforation was observed. Thus, it can be said that the energy of the impactor was mostly used 
for perforation instead of delamination.  Comparison of delaminated areas showed that GL and 
GR composites delaminated less than the hybrid types. The GL/GR/GR/GL composites 
delaminated more than all other types. The GR/GL/GL/GR composites also delaminated more 
than GL and GR composites but less than the GL/GR/GR/GL composites. There is a direct 
relation between the degree of delamination and the interfacial forces between the laminas. It can 
be said that the interface is stronger when the same type of laminae stacked together. However, 
stacking different fabrics or changing the direction of the laminae decreases  interfacial strength. 
The increased delamination seen in the hybrid composites is because of weaker interfacial 
strength. Table 4.4-3 shows the delaminated areas of impacted specimens. 

 
Table 4.4-1  Delaminated areas of impacted composites. 

 

SPECIMEN TYPE 40J 50J 100J
GL 116 161 310
GR 129 160 232

GL/GR/GR/GL 290 336 516
GR/GL/GL/GR 232 244 303

DELAMINATED AREA(mm2 )
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a) Front Surface 

 
b) Back Surface 

 
c) C-Scan 

40J 50J 100J 
Figure 4.4-2  Optical pictures and C-scans of GL composites impacted at 40J, 50J and 100J. 
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a) Front Surface 

 
b) Back Surface 

 
c) C-Scan 

40J 50J 100J 
Figure 4.4-3  Optical pictures and C-scans of GL/GR/GR/GL composites impacted at 40J, 50J 

and 100J. 
 

 
a) Front Surface 
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b) Back Surface 

 
c) C-Scan 

40J 50J 100J 
Figure 4.4-4  Optical pictures and C-scans of GR/GL/GL/GR composites impacted at 40J, 50J 

and 100J. 
 

 
a) Front Surface 
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b) Back Surface 

 
c) C-Scan 

40J 50J 100J 
Figure 4.4-5  Optical pictures and C-scans of GR composites impacted at 40J, 50J and 100J. 

 
It should be noted that the Dynatup 930-I data acquisition system can only measure the 

initial velocity of the impactor and the load vs. time directly. Remaining parameters such as 
absorbed energy, velocity of impactor and deflection can be calculated using equations of 
motion. Figures 4.4-6 to 4.4-8 show the low impact response of composites subjected to impact 
at three different energy levels. 

 
Figure 4.4-6.a shows the force time histories of the four types of specimens. Once the 

curves are evaluated, it is obvious that all of the curves are linear increase at the beginning until 
the 9-10KN load level. The oscillations started after that level and the load still increased. The 
GL specimen had a peak value of 13.3 KN, and the hybrid specimens behaved very similarly 
with a peak value of 12.4 KN. The load values for three cases became zero at around 4.3 ms. 
However, the GR specimen followed a completely different pattern and when the load was 
around 11.2 KN, sudden drop occurred and load did not change for 2 ms. The load started to 
decrease at t = 3 ms. The duration of the contact for GR was around 5.4 ms which was higher 
than the other cases. The visual images in Figure 4.4-2 to 4.4-5 clearly show that all the 
specimens had delamination and only the GR specimen had back surface damage during 40J 
impact. Thus, it can be said that the oscillations after linear increase represents delamination and 
the sudden drop of GR specimen represents the damage at the back surface. The area under the 
load deflection curve (Fig. 4.4-6.b) gives us the energy absorbed by the specimen during impact. 
At first look, it is obvious that the GR specimen absorbed more energy than the others. The 
remaining three specimens absorbed almost the same amount of energy during the 40 J impact. 
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The deflection-time histories (Fig. 4.4-6.c) clearly show the maximum deflection during the 
impact. The maximum deflection, which was 4.9 mm for GL, GL/GR/GR/GL and 
GR/GL/GL/GR specimens, occurred at 2.15 ms. The maximum deflection for GR specimen was 
5.04 mm and happened at 2.7ms. The velocity-time (Fig. 4.4-6.d) histories also show when the 
velocity of the impactor became zero and how the velocity changed after impact. The energy 
time histories (Fig. 4.4-6.e) are commonly used to calculate the impact energy, absorbed energy 
and rebound energy. During the low impact event, when the impactor touches the specimen it 
has the full kinetic energy and starts discharging this energy into the specimen. Thus, energy in 
the specimen linearly increases at the beginning. Once impactor spends all of its energy, 
deflection of the specimen is at the highest point. This point corresponds to the impact energy 
and it was 40 J.  At that point; the specimen is loaded with energy and tries to bounce back to 
initial position. Due to this high level of energy, some deformation and delamination occurs in 
the specimen and some of the energy is spent. The remaining energy is used for the rebound of 
the impactor. The energy absorbed by GL, GR/GL/GL/GR and GL/GR/GR/GL specimens was 
around 16 J.  The GR specimen absorbed 26 J during the 40 J impact. These values can be seen 
by looking at the constant energy level after impact in energy-time histories (Fig. 4.4-6.e). Once 
the absorbed energy is subtracted from the contact energy, the rebound energy is determined.  

 
The same evaluation procedure can be applied for the 50 J and 100j impacts. Instead of 

doing so, some important points will be highlighted for the remaining two sets of experiments. 
The response of the composite specimens to 50 J impact (Fig. 4.4-7) exhibited similar behavior 
as in the 40 J impact case. However, the duration of the impact, the peak load values and the 
absorbed energies increased as a result of increasing impact energy. The energy absorption 
(Fig. 4.4-7.e) by the specimens was different. While the GR specimen absorbed 35J, the GL 
specimen absorbed 12 J.  The hybrid specimen’s energy absorption was between GL and GR. 
The response of the composites to 100 J impact (Fig. 4.4-8) was quite different compared to 
other energy levels. A sudden drop after the peak load value was observed for all the specimen 
types (Fig. 4.4-8.a). This was due to the back surface damage which occurred for all types. The 
back surface images also (Figs 4.4-2 to 4.4-5) clearly show the damage. Another important point 
is the behavior of the GR specimen. All graphs for 100 J impact shows that GR behaved very 
differently than others. This was due to the perforation that happened in impacting the GR 
specimen at 100J energy level. The load- deflection curve (Fig. 4.4-8.b) did not have a close loop 
which was the case for all rebounded tests.  Deflection continued (Fig. 4.4-8.c) to increase and 
velocity (Fig. 4.4-8.d) did not change sign. The energy-time curve (Fig. 4.4-8.e) shows that all of 
the impact energy was absorbed by the GR specimen. 
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a) Load-time histories b) Load-deflection curves 

-50

-40

-30

-20

-10

0

10

0 2 4 6 8 10 12 14 16 18 20

TIME(s)

D
EF

LE
C

TI
O

N
(m

m
)

GR

GR-GL-GL-GR

GL

GL-GR-GR-GL

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 5 6

TIME(s)

VE
LO

C
IT

Y(
m

/s
)

GR

GL

GR-GL-GL-GR

GL-GR-GR-GL

c) Deflection-time histories d)Velocity-time histories 

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7
TIME(s)

EN
ER

G
Y(

J)

GL

GL-GR-GR-GL

GR-GL-GL-GR

GR

 

e) Energy-time histories  
 

Figure 4.4-6  Low-impact response of GL, GR, GL/GR/GR/GL and GR/GL/GL/GR composites 
subjected to 40J impact. 
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e) Energy-time histories  
 

Figure 4.4-7  Low-impact response of GL, GR, GL/GR/GR/GL and GR/GL/GL/GR composites 
subjected to 50J impact. 
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e) Energy-time histories  
 

Figure 4.4-8  Low-impact response of GL, GR, GL/GR/GR/GL and GR/GL/GL/GR composites 
subjected to 100J impact. 

 
Prior to impact tests, two strain-gages were mounted at the front surface of each 

specimen and the strain-time histories were recorded through a strain-gage amplifier and data-
acquisition system. Figure 4.4-9 shows the locations of two strain-gages and dimensions of the 
impact specimens. 
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Figure 4.4-9  The strain-gage locations for low impact test specimens. 
 
Strain time-histories at two locations for three sets of low impact test are shown in 

Figs 4.4-11 to 4.4-13. Comparing the strain values it is seen that strain created in non-hybrid 
specimens is less than strain in the hybrid specimens. GR specimens strain values are also less 
than hybrid types. Strain in the GL-GR-GR-GL specimens is greatest for all impact tests and 
followed GR-GL-GL-GR hybrid specimens. The shape of the strain-time curves is similar to that 
of the force-time curves of the same test. However sometimes, sudden drops and jumps were 
seen in the strain-time histories but not in the force-time histories. These sudden changes can be 
related the front surface cracks created by the low impact. These cracks sometimes propagated 
up to the strain gage locations and affected the sensitivity of the gage. On the other hand, strain 
outputs are directly related to bonding between strain-gages and specimen. The strain-gage 
mounting is a manual operation and depends purely on the ability of the experimenter. In some 
cases, because of weak bonding between strain gage and composite, strain-gage could not 
capture the real behavior of the specimen (GL-1 in Fig. 4.4-13). The solution to this problem is 
to use two strain gages on the same specimen and obtain at least one good strain-time history in 
case of loosing  one. 
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Figure 4.4-11  Strain-time histories of 40J low impact tests. 
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Figure 4.4-12  Strain-time histories of 50J low impact tests. 
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Figure 4.4-13  Strain-time histories of 100J low impact tests. 

 
Finally, the hybrid composite panels were also subject to repeated drop-weight impact 

tests at an impact energy level of 32J. After each impact, the specimen was removed from 
drop-weight impact machine. Optical pictures were taken and the specimen was scanned with 
ultrasonic C-scan. The specimen was then mounted back to the drop-weight impact tester for 
next impact. The process was repeated until the specimen failed (i.e., perforated). In summary, 
the GR specimen was perforated at the end of the 6 impact; the hybrid GR/GL/GL/GR specimen 
was perforated after 33 impacts; the hybrid GL/GR/GR/GL specimen was perforated after 69 
impacts; and the GL specimen did not perforate after 69 impact and there was no sign of 
significant damage to the composite. This explains that GL specimens performed best among 
others. After 69 impact the repeated impact test was stopped. The optical and C-scan images as 
well as the time histories of impact load and impact energy are shown in Figs 4.4-14 to 4.4-17 
for these four types of composite panels, respectively. 
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Figure 4.4-14  Repeated drop-weight impact results of a GR composite specimen 

(impact energy: 32J). 
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Figure 4.4-15  Repeated drop-weight impact results of a GR/GL/GL/GR hybrid composite 

specimen (impact energy: 32J). 
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Figure 4.4-16  Repeated drop-weight impact results of a GL/ GR/GR/GL hybrid composite 

specimen (impact energy: 32J). 
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Figure 4.4-16  (continued) 
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Figure 4.4-17  Repeated drop-weight impact results of a GL composite specimen 
(impact energy: 32J). 
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Figure 4.4-17  (continued) 
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4.5: Ballistic impact tests 
 
Experimental procedures 
The last part of the experimental program is concerned about ballistic impact tests, which 

were conducted using an in-house high pressure gas gun. As shown in Fig. 4.5-1, high pressure 
helium, once released by a fast acting solenoid valve, provides the impact force needed to 
accelerate a 22-caliber copper bullet through the gun barrel to the desired speed. Near the muzzle 
of the gun barrel, two sets of diode laser-amplified photo diode pairs form two optical paths 
separated by 101.6 mm. The voltage changes caused by the traversing of the projectile through 
the two optical paths were recorded for estimating the projectile speed. 

 

 
 

Figure 4.5-1.   Schematics of high-speed gas gun for ballistic impact tests. 
 
The projectile then impinged onto a 24-layer composite strip specimen with dimensions 

shown in Fig. 4.5-2. The specimen, which was also mounted with strain gages, was clamped in a 
length of 50.8 mm at both ends. Thus, the ballistic impact test resembles a clamped-clamped 
beam under dynamic three-point bending. As shown in Fig. 4.5-2, the composite beam specimen 
was impacted by a 22-caliber copper projectile at the center. Two strain gages, marked as SG-1 
and SG-2, respectively, were mounted on the impact side of the specimen. One of the strain 
gages was 25.4 mm and the other was 38.1 mm away from center. During the impact test, the 
projectile sometimes could not hit directly at the center. A strain gage can not survive the impact 
if the impingement is too close to it. Having one strain gage on each side allowed us to obtain at 
least one good strain measurement. Table 4.5-1 summarizes the specimen lay-up configurations 
and the impact velocities of three ballistic impact tests. 
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Figure 4.5-2.   A typical composite beam specimen mounted with two strain-gages on the 
ballistic impact side. 

 
Table 4-4.1.   Parameters of ballistic impact tests. (projectile: 22-caliber copper bullet) 

 

Test Lay-up sequence Impact velocity, V0  (m/s) 

1 3 3 2S
0 / 90    120 

2 3 3 2S
0 / 90    298 

3 3 3 3 3 S
0 / 45 / 90 / 45 −   442 

 
Experimental results and discussion 
Figures 4.5-3 to 4.5-5 show the dynamic strain histories, post-impact optical 

microfractographs and the deformed 22-caliber copper projectile for the three ballistic impact 
tests described in Table 4.5-1. As shown in Fig. 4.5-3, no delamination was observed for 
Ballistic Test 1: 3 3 2S

0 / 90    cross-ply impacted at 120 m/s. Only the top layer of the composite 

was slightly damaged and the deformation of the projectile was not severe. For the Ballistic Test 
2: 3 3 2S

0 / 90    cross-ply impacted at 298 m/s, the 22-caliber copper projectile penetrated into the 

ninth layer of the composite. As shown in Fig. 4.5-4, higher dynamic strains were produced; 
more delamination formed; and the projectile deformed more significantly. 

 
For the case of ballistic impact Test 3: quasi-isotropic 3 3 3 3 S

0 / 45 / 90 / 45 −  , the composite 

beam was impacted at 422 m/s. It was observed that the projectile penetrated fully and exited 
from the back side of the composite. There was serious damage to the composite as well as to the 
projectile. Figure 4.5-5 shows the strain histories, top surface and side views of the composite 
after impact, and the deformed projectile. Delamination occurred between all layers and was 
more severe around the center. The length of the delamination for all layers except the last three 
was approximately 30 mm. The last three layers delaminated more than the others. It should be 
pointed out that the sharp spikes in Fig. 4.5-5(a) might have resulted from computer glitches 
during data acquisition. 
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(a) dynamic strains 

 
 

 

(b) perspective view 
 

(c) side  view 
 

(d) projectile 
 

Figure 4.5-3.   Strain histories and the post-mortem specimen and after-impact projectile of 
Ballistic Test 1: 3 3 2S

0 / 90    cross-ply S2 glass-toughened epoxy composite beam 

impacted at 120 m/s by a 22 caliber copper projectile. 
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(a) dynamic strains 

 

 

 

(b) perspective view 
 

(c) side  view 
 

(d) projectile 
 

Figure 4.5-4.   Strain histories and the post-mortem specimen and after-impact projectile of 
Ballistic Test 2: 3 3 2S

0 / 90    cross-ply S2 glass-toughened epoxy composite beam 

impacted at 298 m/s by a 22 caliber copper projectile. 



Page 57 

 

 

 

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

0 0.005 0.01 0.015 0.02 0.025

M
IC

R
O

ST
R

A
IN

STRAIN (25.4mm away from center)

STRAIN(38.1 mm away from center)

 
 

(a) dynamic strains 

  
 

(b) perspective view 
 

(c) side  view 
 

(d) projectile 
 

Figure 4.5-5.   Strain histories and the post-mortem specimen and after-impact projectile of 
Ballistic Test 3: 3 3 3 3 S

0 / 45 / 90 / 45 −   quasi-isotropic S2 glass-toughened epoxy 

composite beam impacted at 442 m/s by a 22 caliber copper projectile. 
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(a) ballistic impact model for the 3 3 2S

0 / 90    configuration 

 
(b) ballistic impact model for the 3 3 3 3 S

0 / 45 / 90 / 45 −   configuration 

Figure 4.5-6.   Finite element simulation models. 
 

Figure 4.5-6.   Finite element simulations of ballistic impacts for the 3 3 2S
0 / 90    and 

3 3 3 3 S
0 / 45 / 90 / 45 −   configurations. 

 

Dynamic finite element simulations 
Figure 4.5-6 shows the LS-DYNA finite element meshes simulating (a) ballistic impact 

into a 3 3 2S
0 / 90    cross-ply composite beam and (b) ballistic impact into a 3 3 3 3 S

0 / 45 / 90 / 45 −   

quasi-isotropic composite beam. These two ballistic impact problems were modeled by plastic 
kinematic material (MAT 03) for the 22-caliber copper bullet and the Chang-Chang composite 
damage model (MAT 22) for the composite. The Chang-Chang model is an orthotropic material 
where optional brittle failure for composites can be defined [178-180]. Three failure criteria are 
possible in this model: 
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(1) Matrix cracking failure: 
2 2

2 12

2 12

1
S S
σ τ   

+ ≥   
   

 

where σ2 and S2 are the tensile stress and the associated tensile strength in the transverse 
direction whereas τ12 and S12 are the in-plane shear stress and the associated shear strength 
between fibers and the matrix. Once this type of failure occurs, the material constants E2 
(Young’s modulus in the transverse direction), G12 (in-plane shear modulus in the 1-2 plane), ν12 
and ν21 (Poisson’s ratios in the 1-2 plane) are set to zero. 

(2) Fiber breakage: 
2 2

1 12

1 12

1
S S
σ τ   

+ ≥   
   

 

where σ1 and S1 are the tensile stress and the associated tensile strength in the longitudinal 
direction whereas τ12 and S12 are again the in-plane shear stress and the associated shear strength 
between fibers and the matrix. After fiber breakage, E1 (Young’s modulus in the longitudinal 
direction), E2, G12, ν12 and ν21 are all set to zero. 

(3) Compression failure: 
2 2 2

2 12 2 2

12 12 12 2

1 1
2 2

C
S S S C
σ τ σ      

 + + − ≥     
       

 

where C2 is the transverse compressive strength. When this type of failure occurs, the material 
constants E2, ν12 and ν21 are all set to zero. 

 
Note that if the index 2 in any of the above criteria is replaced by index 3, the rules apply 

also to failures in the transverse 3-direction and the 1-3 plane. 
 
The criterion for delamination between the composite layers is governed by the criterion: 

( ) 2 2max 0,
1n s

NFLS SFLS
σ σ   + ≥   

  
, where σn and σs are normal and shear stresses acting on the layer 

interface, respectively, while NFLS and SFLS are normal and shear strengths of the layer 
interface, respectively. This criterion was incorporated into LS-DYNA through 

  

CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_TIEBREAK 
 

Additionally, ERODING_SURFACE_TO_SURFACE contact model was used between 
the impactor and composite. This model allows elements to be eroded when certain failure 
criteria are met. In this study strain-based failure criterion was used for element erosion; that is, 
when ε ≥ εerosion, element was eroded and removed from calculation. In summary, the following 
strength values were used: S1 = 0.988 GPa, S2 = S3 = 0.044 GPa, S12 = S13 = 0.13 GPa, 
C2 = 0.285 GPa, NFLS → ∞, SFLS = 0.065 GPa and εerosion = 18%. 

 
The FEM mesh in Fig. 4.5-6(a) was used to simulate Ballistic Tests 1 and 2: 3 3 2S

0 / 90    

cross-ply composite beam impacted at 120 and 298 m/s, respectively, by a 22-caliber copper 
projectile. Again, due to symmetry, only a quarter model was used. Because delamination mostly 
occurs at the interface where fiber orientations of the adjacent layers change and to save 
computational effort, instead of using 24 layers, only 8 layers with 600 elements for each layer 
were created. As shown in Fig. 4.5-7, the FEM predictions of strains are in good agreement with 
experimental results. Again perhaps due to the filtering in electronic circuitry, the experimental 
data were smoother and smaller than the FEM simulations. 
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(a) Ballistic Test 1: V0 = 120 m/s 
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 (b) Ballistic Test 2: V0 = 298 m/s 
 

Figure 4.5-7.   Comparison of FEM predictions and experimental results of strain histories of 
Ballistic Tests 1 and 2: 3 3 2S

0 / 90    cross-ply composite beam 

impacted by a 22-caliber copper projectile. 
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For the 298 m/s case, the damage progression and beam-spanwise normal stress contours 
during impact are displayed in Fig. 4.5-8. Figure 4.5-9 shows the FEM prediction of time history 
of the projectile velocity. The result indicates that the projectile stuck to the composite specimen 
and the full impact duration completed in about 73 ms when the projectile velocity became zero 
literally. 

 

  
t=0 ms t=0.03 ms 

  
t=0.06 ms t=0.09 ms 

  
t=0.12 ms t=0.18 ms 

 

Figure  4.5-8. Impactor deformation, damage progression in the composite beam  and 
beam-spanwise stress counters of FEM simulation for Ballistic Test 2. 
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Figure 4.5-9. FEM prediction of projectile velocity for Ballistic Test 2. 
 
The FEM mesh in Fig. 4.5-6(b) was used to simulate Ballistic Test 3: 

3 3 3 3 S
0 / 45 / 90 / 45 −   quasi-isotropic composite beam impacted at 442 m/s by a 22-caliber copper 

projectile. Full model was needed since the problem does not possess symmetry with respect to 
geometry and loading. Again only 8 layers with 1,875 elements for each layer were chosen to 
save computational effort. Notice that fine mesh was created for the area where projectile 
impacted the composite while the remaining part was meshed coarsely. The FEM predictions 
and experimental results for the Ballistic Test 3 case are compared in Figs 4.5-10 and 4.5-11 for 
dynamic strain, damage patterns in both front and side views and the deformation of the 
projectile. These two figures indicate that the FEM and experimental results are all in reasonably 
good agreement. 

 
As shown in Fig. 4.5-11(d) the layers at the back tension side of the composite was 

delaminated extensively during the ballistic impact test. However, as depicted in Fig. 4.5-11(c), 
the FEM simulation showed less delamination. This may be attributed to the fact that during this 
ballistic impact test, the tip of the projectile was crashed into a mushroom shape, as shown in 
Fig. 4.5-11(f). The continuing penetration of the mushroom head into the back layers of the 
specimen may have gouged these layers; thus causing very severe damage. On the other hand, in 
order to maintain numerical stability, elements are eroded in LS-DYNA FEM computation when 
sufficient failure criteria were met; thus rendering the material elasticity to zero. Hence, the 
deformed projectile in FEM simulation, as shown in Fig. 4.5-11(e) caused less delamination. 
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Figure 4.5-10. Comparison of FEM predictions and experimental results of strain histories of 

Ballistic Test 3: 3 3 3 3 S
0 / 45 / 90 / 45 −   quasi-isotropic composite beam 

impacted at 442 m/s by a 22-caliber copper projectile. 
 

 
 

(a) stress contours @ t=0.125ms (b) front view (experiment) 
 

Figure 4.5-11.  Comparisons of post impact damage patterns and projectile deformations of FEM 
and experimental results of Ballistic Test 3. 
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(c) side-view (FEM) (d) side view (experiment) 

  
(e) projectile (FEM) (f) projectile (experiment) 

 

Figure 4.5-11.  (continued) 
 

Ballistic limit velocity V50 
Once the proposed damage-induced nonlinear anisotropic constitutive relation are 

verified by experimental results, the model can be employed in engineering design. For instance, 
we can use this model to predict the ballistic limit velocity V50 of armors made of this toughened 
composite. Here V50 is defined as the velocity required for a projectile to reliably penetrate (i.e., 
at least 50%) a piece of armor. Consider composite beams made of 

24
0    S2 glass-toughened 

epoxy with three different thicknesses: 6, 13 and 25 mm. As shown in Fig. 4.5-12, our 
LS-DYNA based FEM analyses predict the corresponding ballistic limit velocities as 300, 500 
and 950 m/s, respectively. Indeed, the simulations can be used to conclude that for this class of 
composite beams, the V50 vs thickness relation is almost linear, as illustrated in Fig. 4.5-13. 

 



Page 65 

 

 

 
6 mm (V50=300 m/s) 13 mm (V50=500 m/s) 25 mm (V50=950 m/s) 

 

Figure 4.5-12.  FEM estimated ballistic limit velocities (V50) for S2 glass/ toughened epoxy 
composite beams with different thicknesses. 

 

 
 

Figure 4.5-13.  The almost linear V50 vs thickness relation, as predicted by finite element 
simulations. 

 
4.6: Conclusions 
S2-glass reinforced toughened epoxy composites and hybrid S2-glass/IM7-graphite 

reinforced API SC-79 epoxy composites impacted at drop-weight (i.e., low) and ballistic (i.e., 
high) velocities were studied experimentally and numerically. Based on this study, the following 
conclusions can be drawn: 

a) The cross-ply configurations: 3 3 2S
0 / 90   , 2 2 3S

0 / 90    or 2 2 3S
90 / 0    have higher low 

impact resistance than the other configurations. 
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b) The time histories of impact force, dynamic strain, damage pattern and projectile 
deformation obtained from experiments and FEM simulations are in good agreement. 

c) Delamination was the predominant damage mode for low-velocity drop-weight 
impact tests; whereas in addition to delamination, matrix failure, fiber breakage and projectile 
deformation were also observed in ballistic impact tests. 

d) The ballistic limit velocity V50 depends almost linearly on the thickness of the 
composite beam. 

e) The S2-glass fiber reinforced composites provide the best resistance to impact. It 
follows by GL/GR/GR/GL hybrid composites, GR/GL/GL/GR hybrid composites, and the the 
GR composites. However, the main reason for using GR is because of its high strength and high 
stiffness, which are important material characteristics for enhancing damage tolerance. 
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